TFAWS Active Thermal Paper Session

The Effect of Gravity on Single Vapor Elongated Bubbles

Alex Scammell and Jungho Kim University of Maryland – College Park

Presented By
Alex Scammell

Thermal & Fluids Analysis Workshop TFAWS 2016 August 1-5, 2016 NASA Ames Research Center Mountain View, CA

Flow Boiling Introduction

- Flow boiling combines liquid latent heat and convection to improve heat transfer efficiency
- Application of two-phase technology to space systems is desired, but better heat transfer predictions are needed
- Mechanistic heat transfer models may serve as an improvement over traditional empirical correlations
- This work was aimed at identifying the heat transfer mechanisms for the slug flow regime

Taylor Bubble Introduction

Fluid motion

- Drift velocity of bubble requires liquid to move to trailing slug
- Steady liquid film formed as wall shear balances with gravitational force
- Circular jet diffuses into slug causing vortices

Define

- U_l average liquid velocity
- U_b bubble velocity
- U_f liquid film velocity
- U_d drift velocity, U_b - U_l
- $-\delta$ liquid film thickness

Experimental Description

UMD Variable Gravity Flow Boiling Experiment

- Designed for parabolic flight testing
- Working fluid HFE 7100
 - $T_{sat} = 60^{\circ}$ C at 1 bar
 - $-\mu_{i}$ = 0.38 cP (water: 1 cP)
 - $-\sigma_1$ =0.013 N/m (water: 0.073 N/m)
- Measurements available
 - Local heat transfer
 - High-speed flow visualization
 - Film thickness

Flow Loop

Heat Transfer Measurements

IR technique from Kim et al. (2012)

Flow Visualization

Wall Temperatures

Heat Transfer Measurement Validation

Single-Phase: Turbulent Flow

Single-Phase: Laminar Flow

Experimental heat transfer coefficient compared to:

- Dittus-Boelter correlation with Al-Arabi (1982) correction for thermal entry length
- Thermally developing mixed convection correlation (Shah & London, Davis & Perona)

Data Collection

- Studied single, elongated vapor bubbles
- Ground and parabolic flight experiments
- Why variable gravity?
 - →Wider range of drift velocities

$$\begin{split} U_d &= U_b - U_l = (C-1)U_l + U_{b,0} \\ \rightarrow U_{b,0} &= f(\Delta \rho_{l,v}, g, \mu_l, \sigma_l, D) \end{split}$$

- Conditions:
 - $G = 50 200 \text{ kg/m}^2\text{s}$
 - $Re_1 = 790 3090$
 - $q'' = 800 1700 \text{ W/m}^2$
 - a/g = 0.01, 0.34, 1, and 1.8
 - $Bo = \frac{(\rho_l \rho_v)gD^2}{\sigma} = 0.5 87$
 - → Micro/Macro-channel threshold: Bo=0.9-19.7
 - → Capillary and Taylor bubbles

NASA C-9 Aircraft

Bubble Dynamics

Bubble Velocity

Buoyancy Term Comparison

a/g	Current Study	White and Beardmore (1962)	Viana et al. (2003)	Rattner and Garimella (2015)
0.01	3±6	0	_	0
1	81±4	80	82	72
1.8	130±9	112	111	109

Heat Transfer: Mechanism Distinctions

<u>0.01g</u>

Re = 1525, $U_0 = 20$ mm/s, q'' = 1.1 kW/m²

<u>1g</u>

Re = 1525, $U_0 = 124$ mm/s, q'' = 2.2 kW/m²

Re_{F} 790, U_{o} =105 mm/s, a/g=1, q''=1.4 kW/m², h_{sp} =130 W/m²K

Wake history contour plot

- Streaks indicate vortices moving away from tail
- Penetration length (L_p) is seen to vary with time

Local, time resolved heat transfer profiles

- Variation in peak magnitude and axial position
- Secondary peaks downstream

 Re_{F} 790, q''=1.4 kW/m², h_{sp} =130 W/m²K

 $Re_{=}3090$, q''=1.7 kW/m², $h_{sp}=192$ W/m²K

 Re_{F} 790, q''=1.4 kW/m², h_{sp} =130 W/m²K

 Re_{F} 790, q''=1.1 kW/m², h_{sp} =104 W/m²K

Near-wake region

Near-wake behavior:

- Broadening of profile
- Decrease in peak magnitude
- Shift of peak location downstream

Onset of Wake Turbulence

Campos and Carvalho (1988)

 Pinto et al. (1998) suggested that turbulence in the wake occurred when

$$Re_{U_d} = \frac{\rho U_d D}{\mu} > 525$$

- Present results predict an onset of vortices at $Re_{U_d} = 741$
- A Strouhal number can be assigned

$$St = \frac{f_v \delta}{(U_d - U_{d,cr})} = 0.19 \pm 0.01$$

Conclusions

- Identification of main heat transfer mechanisms for flow boiling regimes necessary for development of prediction models
- An experimental study was conducted to determine the effect of flow parameters and gravity on rising Taylor bubbles
- The drift velocity was found to have a strong effect on the bubble shape and the heat transfer profiles
- Characteristics of the wake structure were identified (vortex frequency and penetration length) were identified and characterized
- These results can be used as validation for numerical simulations and physics-based model predictions

Acknowledgements

 Work supported by a NASA Space Technology Research Fellowship NNX11AN49H and NASA grant NNX09AK39A

Thank you!